PHYSICS AT 100-200 TeV

Tao Han, Univ. of Wisconsin-Madison (1999 VLHC Annual Meeting, June. 28)

- I. Brief Introduction:
- Particle Physics and Colliders

II. Physics Expectations at the VLHC:

- Representative SM Physics
- Physics Beyond the SM

III. Physics at the High-Energy Frontier

Beyond the Naive Expectation

- M_W , M_Z ? (Gauge symmetry breaking)
- m_t , m_f , $m_{
 u}$? (fermion masses and mixing)
- $M_H \sim \mathcal{O}(M_Z)$? (natural EW scale)
- Supersymmetry? $(M_Z M_{pl} \text{ hierarchy})$
- Techni-/top-color? (dynamical symm. brkng)
- Superstring? (quantum gravity)
- large extra dimensions? (gravity+hierarchy)
-? (... ...)

A. HERA

1998: $\sqrt{s} = 314 \text{ GeV with } 40 \text{ pb}^{-1}/\text{detector};$

2006: $\sqrt{s} = 314 \text{ GeV with 1 fb}^{-1}/\text{detector}$.

B. LEP2

1998: $\sqrt{s} = 189 \text{ GeV with } 200 \text{ pb}^{-1}/\text{detector};$

2000: $\sqrt{s}\sim$ 203 GeV with 500 pb $^{-1}$ /detector

(1998+1999+2000).

C. Tevatron and Upgrade

Current: $\sqrt{s} = 1.8 \text{ TeV}$ with $\sim 100 \text{ pb}^{-1}/\text{detector}$;

TeV2000: $\sqrt{s} = 2$ TeV with ≥ 2 fb⁻¹/detector

TeV33 2006: $\sqrt{s} = 2$ TeV with 30 fb⁻¹/detector

D. LHC

2005: $\sqrt{s} = 14$ TeV with 10 fb⁻¹/detector/yr

200x: $\sqrt{s} = 14$ TeV with 100 fb⁻¹/detector/yr

E. e^+e^- Linear Colliders

NLC 200x: $\sqrt{s} \sim 0.3 - 0.5 \text{ TeV}$ with 50 fb⁻¹/yr

 N^nLC : $\sqrt{s} \sim 1.5$ TeV with 200 fb⁻¹/yr

F. Very Large Hadron Collider

VLHC: $\sqrt{s}\sim 100-200$ TeV with 100 fb $^{-1}/{
m yr}$

G. $\mu^+\mu^-$ Colliders

FMC: $\sqrt{s} \sim m_h$ with 0.1-1 fb⁻¹/yr

NMC: $\sqrt{s} \sim 3 - 4$ TeV with 100-1000 fb⁻¹/yr

II. Physics Expectations at The VLHC

- Representative SM Physics:
 - 1. QCD physics; $\sigma(tot)$ at highest energies
 - 2. truly factories for: $b\overline{b}$, $t\overline{t}$, Z/W^{\pm} , $W^{+}W^{-}$...
 - 3. SM Higgs factory

- New Physics Beyond the SM
 - 1. SUSY states: $\tilde{q}\bar{\tilde{q}},~\tilde{g}\tilde{g}$
 - 2. new heavy particles: $Z',\ W_R^\pm,\ lq$
 - 3. very heavy Higgs

III. High-Energy Frontier: Beyond the LHC

(a) Multi-TeV Squarks: $ilde{u}, \; ilde{d}$

 $ilde{t}$ is at $\mathcal{O}(1 \text{ TeV})$ (EW hierarchy) $ilde{q}$ are at $\mathcal{O}(5 \text{ TeV})$ (FCNC)

- (b) SUSY Breaking Messengers: Φ , $\bar{\Phi}$ are at $\mathcal{O}(10 - 100 \text{ TeV})$
- (c) Technicolor Jets:

Final Technicolor Manifestation: very massive jets $U_{TC}\to\pi_{TC}^+\pi_{TC}^0X\to t\overline{b}, b\overline{b}, X$

(d) Strongly-interacting Electroweak Sector:

If no $h_i/SUSY$ found before and at the LHC, W_LW_L Scattering must reveal new dynamics

• $\Lambda_{EW}(W_LW_L \to W_LW_L) \sim \sqrt{8\pi} \ v \sim 1.2 \ \text{TeV}.$

$$\sqrt{s_W} \sim$$
 2 TeV $\Rightarrow \sqrt{s_f} >$ 4 TeV $\Rightarrow \sqrt{s_p} >$ 65 TeV

$$\frac{\sigma(W_L^+W_L^- \to W_L^+W_L^-)}{\sigma(W_L^+W_L^- \to Z_L Z_L)} \left\{ \begin{array}{l} \sim 2 & \text{scalar } H^0, \\ \gg 1 & \text{vector } \rho_{TC}^0, \\ \sim 2/3 & \text{LET } \sqrt{s} \ll M. \end{array} \right.$$

•

$$\Lambda(W_L^+W_L^- \to f\bar{f}) = \frac{8\pi v^2}{3m_f} \sim \begin{cases} 3 \text{ TeV} & m_t = 175 \text{ GeV} \\ 97 \text{ TeV} & m_b = 5 \text{ GeV}. \end{cases}$$

(e) Contact Interactions: Compositeness?

New heavy bosons and quark/lepton sub-structure lead to 4-fermion contact interactions:

$$4\pi \frac{\kappa}{\Lambda^2} \ \bar{\psi}_{f1}$$
, $\mu \psi_{f1} \ \bar{\psi}_{f2}$, $\mu \psi_{f2}$

The best channel at hadron colliders is the DY process:

$$pp \to \gamma^*, Z \to e^+e^-/\mu^+\mu^- + X$$

The Sensitivity to the "composite scale Λ " goes like

$$\frac{s^2}{\Lambda^4}$$

so that:

$$\frac{(1.8 \text{ TeV})^4}{(3 \text{ TeV})^4} \sim \frac{(14 \text{ TeV})^4}{(25 \text{ TeV})^4} \sim \frac{(100 \text{ TeV})^4}{(170 \text{ TeV})^4}$$

170 TeV
$$\Rightarrow 10^{-18}$$
 cm!

(f) Multi-W, H production via Sphalerons

Electroweak instantons (sphalerons) induce B+L violating transition

$$qq \to 7\bar{q} + 3\bar{\ell} + n_w W^{\pm} + n_h H$$

with total cross section

$$\sigma(tot) \sim e^{-2\pi/\alpha_W} e^{\alpha_W s/M_W^2} \le \frac{16\pi}{s}.$$

 \Rightarrow Enhanced for $\sqrt{s} > M_W/\alpha_w$, bound by unitarity.

(g) String State Excitation

If the superstring (or quantum gravity) scale is as low as $\mathcal{O}(1-10 \text{ TeV})$, then the new physics threshold opens at the VLHC:

Many Kaluza-Klein/Regge states produced, as well as BLACK HOLES

For more details, call Prof. Dimopoulos ...

Other Issues Not Mentioned:

- Physics with Booster-Tunnel Collider?
 (6-25 TeV)
- Detector demands:
 - 1. very high event rate
 - 2. vertexing?
 - 3. coverage: forward region?
 - 4. tracking? very energetic (multi-TeV) particles
- Earlier Refs.:
 - 1. The European Long Interacting Storage Accelerator (ELOISTRON)
 - 2. Snowmass Report: (D. Denisov and S. Keller)
 - 3. VLHC Working Group Report: (D. Denisov and S. Keller et al.)

CONCLUSIONS

 VLHC has a rich experimental program beyond next generation of colliders:
 LHC/TeV Lepton colliders,
 on MANY physics topics you can think of

 High energy/high luminosity frontier may uncover unexpected that can revolutionize our understanding of particle physics.